
Journal of Statistical Physics, Vol. 93, Nos. 1/2, 1998

1. INTRODUCTION

In the previous report we have presented analytic expressions of the gel
point as a function of the inverse concentration, the result being in good
agreement with the observations. In this report we further examine the
theoretical result through the comparison with the percolation simulation.

It was not until 1957, 16 years after Flory's first paper(1) on gelation
has appeared, that the percolation theory was introduced by Broadbent
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The theory of gel point in real polymer solutions is examined with the empirical
correlation between the reciprocal of the percolation threshold and the coor-
dination number given by the percolation theory. Applying a larger value of the
relative frequency of cyclization, an excellent agreement is obtained between the
present theory and the percolation result. This suggest that while the ring dis-
tribution on lattices is similar to that in real systems, ring production is more
frequent in the lattice model than in real systems. To confirm this conjecture, we
derive the ring distribution function of the lattice model as a limiting case of
d-» oo, and show that the solution is in fact identical to the asymptotic formula
of C-» oo in real systems except for the coefficient '$, which has a maximum at
d = 5, in support of the above conjecture. To examine the validity of the
asymptotic solution for the lattice model, we apply it to the critical point
problem of the percolation theory, showing that the solution works well in high
dimensions greater than six.
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and Hammersley.(2) Nineteen more years later, the theory was first applied
to polymer chemistry as a realistic model of branching process which takes
into account ring formation and excluded volume effects. (3,4) The percola-
tion model has unveiled many a novel feature of gelation, to which most
polymer chemists had been unaccustomed then: critical exponents, dimen-
sionality, cluster shape, and so forth. (5,6) It has further furnished some
empirical correlations(7) Well-known is the linear relationship(8) between
the percolation threshold (the gel point) and coordination number z (func-
tionality /) which we are now going to take up for the purpose of
reexamination of the preceding theory by the author and coworkers.(9c)

2. THEORETICAL BACKGROUND

We derive an approximate solution of the gel point according to the
preceding works. In the limit of an infinite initial monomer concentration C,
the concentration of cyclics [F] in real polymer solutions asymptotically
converges on the form:(9,10)

P being the probability that one end on a chain enters into a volume v
with the radius of a bond length l around the other end. In concentrated
solutions, p has the Gaussian form:

where d is dimension and Sd the surface area of a (d-dimensional sphere.
Note that Eq. (1) is valid and makes sense only below the classical gel
point Dco, for beyond this point the right hand side sum diverges.

The general solution of [T] has not been found yet. When we con-
sider a high concentration regime, however, it is reasonable to think that
Eq. (1) is a good approximation of [F]. Based on this idea, we replace D
in Eq. (1) by Dc to obtain a provisional equality. Experiments have shown

with D being the extent of reaction, / the functionality and qj the relative
frequency of cyclization of j-chains to intermolecular reaction. qj is
associated with the cyclization probability p by the relation:
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that the sol-gel line is a smooth and continuous function of C. So, one may,
expand the resultant equation around Dc = Dco into the Taylor series.
Collecting the leading two terms, and making use of the critical relation,
(f— 1) Dco= 1, one gets the approximate expression of [F]

which is valid for all dimensions greater than 3, since it may occur in the
two dimension that the second term of the right hand side diverges; e.g.,
S<» ; j-1 «-!j=i J ^ :yj-

Note that the critical extent of reaction is separable,

The unification of the tree theory and the cyclization theory can in prin-
ciple be achieved by calculating the above respective terms independently.
For simplification, we here introduce the independence assumption
between intermolecular reaction and cyclization which asserts that the gel
point shifts upward exactly by the portion of functional units wasted by
cyclization. Then, it follows that

Let y be the reciprocal, 1/C= V/M0, of the initial monomer concentration
where M0 is the total number of monomer units of the R — Af model and
V the volume. D(ring) can be equated with 2[T]/C, since only two func-
tional units are wasted every cyclization independently of the size of rings.
Substituting Eq. (3) into Eq. (4), and rearranging the resultant equation,
one arrives at an approximate expression of the gel point in real polymer
solutions:

3. COMPARISON WITH PERCOLATION RESULTS

Let us apply the above result to the empirical correlation known by
the percolation theory. Prior to the comparison, we rewrite Eq. (5) in the
reciprocal of the gel point, u =1 /D c , to get
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Looking at u as a function of f alone, we see U varies linearly with increas-
ing f in proportion to f-1, in accordance with the empirical rule of the
percolation theory.

To make sure this, U is plotted as against f in Fig. 1, together with the
calculated values ( x, 1 / p b o n d ) in the 3-d percolation simulation(7,8) on
various lattices. The initial concentration C = 8mole/l, hence y = 0.125,
was chosen so that it corresponds to the melt polymerization in the three
dimensional space where C ranges from ~5 to 10 mole/l in general.
Taking the trial value Zy^/sS, and assuming Z/<?/= 5 £, #>,/j valid for
the excluded volume chain (q>j oc j - 2 ) of j> 3 on the 3-d lattice(11,12) the
excellent agreement between the theory (solid line) and the percolation
results is found (Appendix). If we extend the concept of gelation to the
imaginary regime of f< 2, we realize that the theoretical line must intercept
the / axis at / = 1 where the divergence of the gel point occurs. Since no
cyclization is possible in monofunctional systems, the classical gel point
formula applies, that is, Dco = 1 / ( f — 1)-> oo as f-> 1.

Fig. 1. The correlation between the reciprocal of the gel point (percolation threshold)
and the functionality (coordination number), x: calculated(7) (by the percolation theory);
—: theoretical line by Eq. (6).
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The consistency with the percolation results suggests that Eq. (5) has
the sound basis as an approximate formula. The numerical value applied
above (£y- q>j = 5), on the other hand, seems exceedingly large, compared to
the observed values ( <1) in real systems.(31) This becomes more evident
when we look at the fact that smaller rings, which would occupy an essen-
tial part of the ring fraction, are always forbidden on lattices. Thus it is
suggested: while (i) the ring distribution on lattices will be similar to that
in real systems, (ii) the production of rings is more frequent in the lattice
model. This problem of the overproduction of rings of the lattice model has
already been conjectured by Burchard.(14) We now inspect these points in
detail in the following.

4. RING DISTRIBUTION FUNCTION

It has been pointed out frequently(5,7) that there are two specific
features in the percolation model: (i) one is that molecules are fixed on a
lattice; (ii) the second is that the theory does not incorporate solvent
molecules. Thus it has been recognized that the theory essentially simulates
the melt polymerization.

While the site-bond percolation (15,16) has been devised to improve the
second problem, the deviation has been found in the pb — <j>s curvature
between the percolation results and the observed values in real systems.
Hence, the question arose as to whether the percolation model really
simulates branching reactions.(6) To consider this problem, it is useful to
analyze the difference of the chemical processes between the real system
and the percolation model.

4.1. Real system

Consider a branching reaction in the real system, and pay attention to
a functional unit on a branched molecule. Let the functional unit belong to
a j-chain. Then, let us consider a transition from i— 1 bonds to i bonds. The
functional unit in question must undergo either intermolecular reaction or
cyclization. So, the transition probability can be written for a j-ring as

and for intermolecular reaction as
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where v denotes the chemical velocity; the subscript Rjj-rings, R the sum
of all rings from 1 to oo and L intermolecular reaction. As experiments
have shown, cyclization undergoes the first order reaction of concentration,
whereas intermolecular reaction the second order. In terms of statistical
physics, the cyclization rate can be equated with the cyclization probability
of y'-chains multiplied by the number of chances Pj of cyclization and
therefore

while the intermolecular reaction rate is the probability v/V of a given
unreacted functional unit entering a small volume v around the other unit,
multiplied by the number of all pairs, (l/2){fM0(l — D)}2, so that

It has been known that (Pj approaches to the asymptotic form with increas-
ing C:

Moreover, because of the relation VR/V L oc C-1, one has

By the relationship (2), the transition probability reduces to

Note that p{ring j} is equivalent to the number fraction, 8NR., of j-
rings to be formed in the transition of i — 1 ->i. Making use of the defini-
tion Si = (fM0/2)-6D, one has from Eq. (7)

Integrating this equation, we arrive at the simple expression of Eq. (1) for
the number concentration of rings. This is the basic way of the derivation
of the ring distribution function(9) in the real system.

In turn, let us focus our attention on the

4.2. Lattice Model

Let P(r) be the end-to-end distance probability distribution function.
The chain is fixed on a lattice, so the conformation is fixed and time-
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invariant. By simulating many other chains of the same size, however, it is
possible that the theory correctly takes into account the conformational
change in effect. Thus, within the framework of the approximation, the
lattice theory correctly estimates the cyclization probability P.

To derive an analytic solution of ring distribution on lattices, let us
first assume that the relative rate of cyclization to intermolecular reaction
is a monotonic decreasing function of dimension. The validity of this
hypothesis becomes evident according to the derivation.

Consider a high dimension where it has been known that the end-to-
end distance distribution can be well approximated by the Gaussian func-
tion. The cyclization probability is the probability that one end of a chain
enters into a volume with the radius of a bond length l. In this case, l can
be equated with the size of unit cell. Since immediate reversals are for-
bidden, there are /— 1 paths for the end monomer site to react, of which
only one path can lead to the other end. The fraction of unoccupied paths
is (f— 1)(1 — D); hence in order for cyclization to occur, P must be divided
by the factor (f- 1)(1 - D), so that

In the real polymer solutions, this factor did not appear explicitly since that
was canceled out exactly by the same factor appearing in the inter-
molecular reaction term, so that it was unnecessary to introduce the new
quantity Pcy. However, Pcy is essential for the lattice theory, as becomes
clear in the following.

The total number of chances of cyclization is identical with the one
derived on the basis of the tree approximation of C-» oo. Only, in the lat-
tice model it corresponds, by the hypothesis, to the solution of d->oo.
Hence,

The cyclization rate can be equated with the product: Pcyxj(d-I), and
therefore

Then, let us proceed to the calculation of the intermolecular reaction
rate. For this purpose we are interested in the number of unreacted func-
tional units. The probability of a randomly chosen functional unit being
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unreacted is 1 — D, while there are f M 0 ( 1 — D) such functional units
altogether. A given unreacted functional unit possesses only one chance to
react; it can form a bond with the nearest neighbor alone which, thanks to
the specific feature of lattices, is always unoccupied by the probability 1.
Hence, the intermolecular reaction rate becomes

The expression asymptotically becomes exact as d-. oo where cyclization is
suppressed entirely. Thus, in the lattice model, clusters grow according to
the first order reaction of the concentration; no intermolecular reaction
occurs in the ordinary sense, in contrast to the case in the real polymer
solutions.

On the other hand, as d-* oo, P -> 0 and hence v R / v L ^ 0 , correspond-
ing to the limiting case of C -» oo in the real system. The transition prob-
ability then reduces to ^VR/VL and yields

With 6i=(f M 0 / 2 ) . S D , carrying out the integration of Eq. (10) one gets
the asymptotic expression of the total ring concentration on lattices

Since f-* oo with d—> oo, it further reduces to

At first sight, it may appear that there is a marked difference between
Eq. (1) and Eq. (11); so the result is not in harmony with the foregoing
findings concerning the linear rule between D-1 and f. However, this is not
the case.

Consider the d-dimensional hyper-cubic lattice. Then C = ( l / l ) d

(Appendix). For a long chain, one has dl2/2<r2> ^0; then P is separable
and yields 0>^P(0 ) v = p j v , where v has the form £ fd with # being the
coefficient. Thus, C and v essentially cancel out each other, resulting in the
familiar form:
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Comparing Eq. (11') with Eq. (1), it turns out that while the microscopic
feature of the chemical process is entirely different in both the systems, the
branching reaction proceeds, in effect, in the same manner between the lat-
tice model and the real system, except for only one point that the amount
of rings is different, by the factor <$ = 2nd/2/dT(d/2), varying with dimen-
sion as 4n/3(d=3), n2/2(d = 4),..., which has a maximum at d = 5, beyond
which it rapidly decreases to 0. This behavior of (€ never means that the
cyclic formation becomes maximum at d= 5; instead, the product e x qj is
a steeply decreasing function of d and so is the [T], in harmony with the
foregoing hypothesis.

In consequence, the above result shows: while (i) the branching reac-
tion proceeds essentially in the same manner in both the systems, (ii) in
lower dimensions, the ring production tends to be more frequent in the
lattice model than in the real systems, in accordance with the findings in
Section 3.

4.3. Application to Simulation Results

Let us apply Eq. (11) to the percolation result. According to the bond
percolation simulation at the six dimension, it has been shown numerically
that pbond = 0.094. For the hypercubic lattice, f = 2d= 12, and the mean
square end-to-end distance without excluded volume effects is

Note that as f-» oo, < r 2 > -> j l 2 ; with increasing d, therefore, the lattice
chain tends to behave like a freely joined chain. Summing up even number
rings alone (corresponding to odd bond numbers: j = 3, 5, 7,..., 2k + 1,...),
the immediate integration of Eq. (11) yields, for l=1,

Replacing the corresponding terms in Eq. (5) with these, one gets
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whereas, with p j = P ( 0 ) , Eq. (11) yields Dc = 0.095. These are close to the
observed value 0.094.(7.8) The results are summarized in Fig. 2 as a func-
tion of d. Diamonds (O) denote the observed values on the hyper-cubic
lattices, and the heavy line (—) the present theory based on Eq. f 11). As
we can see, both the curves rapidly converge on the same prediction with
increasing d, showing that Eq. ( 1 1 ) works well for d > 6 .

5. DISCUSSION

When one compares the mathematical structures of Eqs. (1) and (11),
an unexpected interpretation arises. As a space-freedom expands, it
becomes a rarer event for one end on a chain to encounter the other end
for cyclization. Thus, it follows that as the dimensionality increases, the
cyclization probability P decreases strongly, and so does the [T] of
Eq. (11). This is the behavior of cyclization that the lattice theory predicts
by Eq. (11). However, for the real system described by Eq. (1 ) , it is the
relative frequency pj that determines the amount of rings and not P.
Unlike P, the quantity pt is not such a monotonic decreasing function
of d. By the foregoing relation (2) between pi and P, we can show that pi

once goes down with increasing dimensionality to attain a minimum point,
then again goes up indefinitely. There is a minimum point of pj around
d ~ p ( r j 2 ) ; beyond this point it turns to an increasing function. In Fig. 3 is
shown an example of d-dependence of pj based on the numerical integration

Fig. 2. Dimensionality dependence of the gel point. O: observed points based on the per-
colation theory in hyper-cubic lattices. —: theoretical line calculated from Eqs. (5) and ( 1 1 ) for
p= 1.
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Fig. 3. Dimensionality dependence of the relative cyclization frequency, cp, = .#•/(• was
calculated numerically integrating the Gaussian function of j= 4 and l=1.

of P/v. In terms of the transition probability, it follows that for the real
system

which means that in the limit of the infinite dimension, all the products are
of cyclic origin. This behavior of cyclization in the real system is not only
so unexpected, but also opposed to the prediction by Eq. ( 1 1 ) of the lattice
theory. The physical meaning of this difference between the two theories,
however, can be easily comprehended as follows:

As the dimensionality increases, the space-freedom expands, so the
probability of one end on a chain encountering the other end must
decrease, whereas by just the same reason, the probability of two functional
units on different molecules encountering must decrease as well. As a result
of this competition, the minimum Pj, min occurs at some point dmin beyond
which cyclization predominates over intermolecular reaction. Thus, at suf-
ficiently high dimensions, the system behaves as if a dilute solution;
molecules having a tendency to be more isolated from each other, and
cyclization becoming overwhelming.

On the other hand, the collision probability on lattices between two
units on different molecules is always fixed to unity because of the struc-
tural specificity of lattices.(17) Mathematically, this can be explained by the
absence of the v/V term from the intermolecular reaction. For lack of this
term, intermolecular reaction on lattices has no dependence on the dimen-
sionality; it is a function of functionality alone, while cyclization depends



strongly on d (Section 4.2) according to P, the decreasing function of d. As
the dimensionality increases, therefore, the relative rate of cyclization to
intermolecular reaction decreases, resulting in the known behavior of the
lattice model: vR/vL->0 as d-> oo.

The other salient feature is that Eq. ( 1 1 ) is proportional to the concen-
tration C—for the site-bond percolation, it becomes Cps, ps being the frac-
tion of monomer sites. This means that the fraction of rings ([F]/CPs) is
independent of the concentration. Hence, cyclization does not vanish in the
lattice model(17) irrespective of the monomer concentration, in contrast to
the behavior of the real polymer solutions.

6. CONCLUDING REMARKS

We have applied the analytic expression of the gel point to the empiri-
cal correlation between the reciprocal of the gel point and the functionality
known by the percolation theory. The present theory embraces the essential
features which the empirical formula has revealed. However, in order to
obtain the best fitting, it was found that the significant larger value is
required for the relative frequency of cyclization, implying that while the
branching reaction proceeds, in effect, in the same manner in both the
systems, the production of rings is more frequent in the lattice model than
in the real systems.

To examine our conjecture, we have derived the ring distribution func-
tion on lattices for the limiting case of <d-> oo, and showed that the solution
is identical with the corresponding distribution function of C -> oo in the
real system, except for the coefficient <& which has the maximum at d=5,
in support of the above conjecture.

We have discussed the differences of the chemical process between the
polymer theory and the percolation theory: a typical one being that in the
lattice model, the fraction of rings is independent of the monomer concen-
tration.

APPENDIX

pj and C have the dimensions of molecules .L-d (L: length),(13) so that
y has Ld .molecules-1, resulting in the dimensionless quantity tp j y.
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